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Abstract. Most popular strongly typed programming languages sup-
port function overloading. In combination with polymorphism this leads
to essential language constructs, for example typeclasses in Haskell or
traits in Rust. We introduce System FO, a minimal language extension
to System F, with support for overloading and polymorphism. Further-
more, we prove the Dictionary Passing Transform from System FO to
System F to be type preserving using Agda.

Abstract. (german) Viele stark getypte Programmiersprachen unter-
stützen das Überladen von Funktionsnamen. In Kombination mit Poly-
morphismus ergeben sich essenzielle Sprachkonstrukte, beispielsweise Typ-
klassen in Haskell, oder Traits in Rust. Wir erarbeiten System FO, eine
minimale Spracherweiterung von System F, die Überladung und Poly-
morphismus unterstützt. Anschlieÿend beweisen wir formal in Agda, dass
die Dictionary Passing Transform von System FO zu System F typerhal-
tend ist.
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1 Introduction

1.1 Overloading in Programming Languages

Overloading function names is a practical technique to overcome verbosity in

real world programming languages. In every language there exist commonly used

function names and operators that are de�ned for a variety of type combinations.

Overloading the meaning of a function name helps to solve the problem of having

to de�ne similar but di�ering names and operators for di�erent type combina-

tions. Overloading is also sometimes referred to as ad-hoc polymorphism. An

ad-hoc polymorphic function is allowed to have multiple type-speci�c meanings

for all types that it is de�ned for. In contrast, a parametric polymorphic function

only de�nes abstract behavior that must work for all types.

Python, for example, uses magic methods to overload commonly used opera-

tors on user de�ned classes and Java utilizes method overloading. Both Python

and Java implement rather restricted forms of overloading. Haskell solves the

overloading problem with a more general concept, called typeclasses.

1.2 Typeclasses in Haskell

Essentially, typeclasses allow to declare function names with generic type signa-

tures. We can give one of possibly many meanings to a typeclass by instantiating

the typeclass for concrete types. When we instantiate a typeclass, we must pro-

vide an actual implementation for all functions de�ned by the typeclass, based

on the concrete types that the typeclass is instantiated for. When we invoke

an overloaded function name de�ned by a typeclass, we expect the compiler to

determine the correct instance, based on the types of the arguments that were

applied to the overloaded function name. Furthermore, Haskell allows to con-

strain type variables via type constraints to only be substituted by a concrete

type, if there exists an instance for the concrete type. Type constraints allow

to abstract over all types that inherit a shared behavior, but the actual imple-

mentation of the behavior can di�er per type. Type constraints are a powerful

formalism in addition to parametric polymorphism.

Example: Overloading Equality in Haskell

In this example the function eq : α α Bool is overloaded with di�erent

meanings for di�erent substitutions {α 7→ τ}. We want to be able to call eq on
both {α 7→ Nat} and {α 7→ [β]}, where β is a type and there exists an instance that
gives meaning to eq : β β Bool. The intuition here is that we want to be able
to compare natural numbers Nat and lists [β], given the elements of type β are known
to be comparable.
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class Eq α where

eq :: α α Bool

instance Eq Nat where

eq x y = x
.
= y

instance Eq β ⇒ Eq [β] where

eq [] [] = True

eq (x : xs) (y : ys) = eq x y && eq xs ys

.. eq 42 0 .. eq [42, 0] [42, 0] ..

First, typeclass Eq is declared with a single generic function signature eq :: α α

Bool. We then instantiate Eq for {α 7→ Nat}. After that, Eq is instantiated for {α
7→ [β]}, given that an instance Eq β can be resolved for some concrete type β. As a
result, we can invoke eq on expressions with type Nat and [Nat]. In the latter case, the
type constraint Eq β ⇒ .. in the instance for lists resolves to the instance for natural
numbers.

1.3 Desugaring Typeclass Functionality to System FO

System FO is a minimal calculus with support for overloading and polymorphism based
on System F. System F is also sometimes referred to as polymorphic lambda calculus or
second-order lambda calculus. In System FO we give up high level language constructs
and instead work with simple overloaded identi�ers.
Using the decl o in e expression we can introduce an new overloaded variable o. If
declared as overloaded, o can be instantiated for the type τ of the expression e using the
inst o = e in e' expression. In Haskell instances must comply with the generic type
signatures de�ned by the typeclass. Such signatures are not present in System FO and
overloaded variables can be instantiated for arbitrary types. Locally shadowing other
instances of the same type is allowed. Constraints can be introduced on the expression
level using constraint abstractions λ̄ (o : τ). e'. A constraint o : τ requires the
type system to search for an instance for the overloaded variable o that has type τ. If
the constraint cannot be resolved, then the program is invalid. Constraint abstractions
result in constraint types [o : τ] ⇒ τ' that lift constraints onto the type level. We
introduce constraints on the expression level because instance expressions do not have
an explicit type annotation in System FO. All expressions with constraint types [o :

τ] ⇒ τ' are implicitly treated as expressions of type τ' by the type system, given
that the constraint o : τ can be resolved.

Example: Overloading Equality in System FO

Recall the Haskell example from above. The same functionality can be expressed in
System FO. For convenience, type annotations for instances are given.
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decl eq in

inst eq : Nat Nat Bool

= λx. λy. .. in

inst eq : ∀β. [eq : β β Bool] ⇒ [β] [β] Bool

= Λβ. λ̄(eq : β β Bool). λxs. λys. .. in

.. eq 42 0 .. eq Nat [42, 0] [42, 0] ..

We �rst declare eq to be an overloaded identi�er and instantiate eq for equality on
Nat. Next, we instantiate eq for equality on lists [β], given that the constraint eq

: β β Bool introduced by the constraint abstraction is satis�ed. Because System
FO is based on System F, a calculus without type inference, we are required to bind
type variables using type abstractions Λα. .. and eliminate type variables using type
application.
A little caveat: the instance for lists would potentially need to recursively call eq

for sublists, but the formalization of System FO does not actually support recursion.
Extending System FO with recursive let bindings and thus recursive instances is known
to be straight forward.

1.4 Translating System FO back to System F

System FO can be translated back to System F. This implies that System FO is no more
expressive or powerful than System F. After all, overloading is more of a convenience
feature.
The Dictionary Passing Transform translates well typed System FO expressions to
well typed System F expressions. The translation requires knowledge acquired during
type checking. More speci�cally, we need to know the instances that were resolved for
invocations of overloaded identi�ers and the instances that constraints were implicitly
resolved with.
The translation removes all decl expressions. Instance expressions inst o = e in e'

are replaced with let oτ = e in e' expressions, where oτ is a unique name with
respect to the type τ of the expression e. Implicitly resolved constraints in System FO
will be taken as explicit higher-order function arguments in System F. As a result,
constraint abstractions λ̄ (o : τ). e' translate to normal abstractions λoτ. e' and
constraint types [o : τ] ⇒ τ' translate to function types τ τ'. A invocation of an
overloaded function name o translates to the correct unique variable name oτ , that is
bound by the let binding that got introduced for the corresponding resolved instance.
The translation becomes more intuitive when looking at an example.

Example: Dicitionary Passing Transform

Recall the System FO example from above. We use indices to represent unique names
oτ . Applying the Dictionary Passing Transform to the example above results in a well
typed System F expression. Type annotations for let bindings are given for convenience.
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let eq1 : Nat Nat Bool

= λx. λy. .. in

let eq2 : ∀β. (β β Bool) [β] [β] Bool

= Λβ. λeq1. λxs. λys. .. in

.. eq1 42 0 .. eq2 Nat eq1 [42, 0] [42, 0] ..

We remove the decl expression and transform both inst expressions to let bindings
with unique names eqi. Inside the instance for lists, the constraint abstraction trans-
lates to a normal lambda abstraction. The lambda abstraction takes the constraint
that was implicitly resolved in System FO as an explicit higher-order function argu-
ment. Invocations of eq translate to correct unique variables eqi that are bound by
the let bindings that got introduced for the former resolved instances. Because eq2 is
invoked for a list of numbers, we must pass the correct instance to eliminate the new
higher-order function binding by explicitly passing instance eq1 as argument.

2 Preliminary

2.1 Dependently Typed Programming in Agda

Agda is a dependently typed programming language and proof assistant [3]. Agda's
type system is based on intuitionistic type theory and allows to construct proofs based
on the Curry-Howard correspondence. The Curry-Howard correspondence is an iso-
morphic relationship between programs written in dependently typed programming
languages and mathematical proofs written in �rst order logic. Because of the Curry-
Howard correspondence, programs correspond to proofs and formulae correspond to
types. Thus, type checked Agda programs imply the correctness of the corresponding
proofs, assuming that we do not use unsafe Agda features and Agda is implemented
correctly. We will use Agda to formalize the type preservation proof for the Dictionary
Passing Transform from System FO to System F.

2.2 Design Decisions for the Agda Formalization

To formalize the syntaxes of System F and System FO in Agda we use a single data
type Term indexed by sorts s. Sorts distinguish between di�erent categories of terms.
For example, the sort es represents expressions e, τs represents types τ and κs repre-
sents kinds. In System F and System FO there only exists a single kind ⋆. The name
'sort' originates from the theory of pure type systems [2], but neither System F nor
System FO allow any interesting dependencies between terms of sort es, τs, and κs.
Using a single data type to formalize syntaxes yields more elegant proofs involving
contexts, renamings and substitutions. In consequence of using a single data type, we
must use extrinsic typing because intrinsically typed terms would need to be indexed
by themselves and Agda does not support self-indexed data types. In the actual im-
plementation, the data type Term has another index S that we will ignore for now.

2.3 Overview of the Type Preservation Proof

The overall goal will be to prove that the Dictionary Passing Transform is type pre-
serving. Let ⊢t be any well formed System FO term Γ ⊢FO t : T , where Γ is a typing
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context of type CtxFO , t is a TermFO s, T is a TermFO s' and s' is the sort of the typing
result for terms of the sort s. There are two cases for typings: Γ ⊢ e : τ and Γ ⊢ τ : ⋆.
Let ⇝ : (Γ ⊢FO t : T ) TermF s be the Dictionary Passing Transform that translates
well typed System FO terms to untyped System F terms. Further, let ⇝Γ : CtxFO

CtxF be the transform of contexts and ⇝T : TermFO s' TermF s' be the transform
of untyped types and kinds. We show that for all well typed System FO terms ⊢t the
Dictionary Passing Transform results in a well typed System F term (⇝Γ Γ) ⊢F (⇝
⊢t) : (⇝T T ).
We begin by formalizing the syntax, typing and semantic of System F and prove its
soundness in section 3. In section 4, we formalize System FO's syntax and typing. In
the end, we formalize the translation of the Dictionary Passing Transform and prove
it to be type preserving in section 5.
We do not formalize semantics and soundness for System FO. In a way, correct seman-
tics for System FO are already given by the type preserving translation from System
FO to System F. This is because we can simply apply the semantics of System F after
translating a given System FO program. And furthermore, the semantics of System F
are proven to be sound in combination with the type system that System FO is safely
translated to.

3 System F

3.1 Speci�cation

Sorts

The formalization of System F requires three sorts: es for expressions, τs for types
and κs for kinds.

data Sort : Bindable Set where
es : Sort var
τs : Sort var
κs : Sort no-var

Sorts are indexed by the boolish data type Bindable. The index var indicates that vari-
ables for terms of a sort can be bound. In contrast, the index no-var says that variables
for terms of a sort cannot be bound. In this case, System F supports abstracting over
expressions and types, but not over kinds. Going forward, we will use the variable r
for elements of type Bindable, the variable s for elements of type Sort and the variable
S for lists of bindable sorts with type Sorts = List (Sort var).

Syntax

The syntax of System F is represented in a single data type Term that is indexed
by sorts S and sort s. The index S is inspired by Debruijn indices. Debruijn indices
reference variables using a number that counts the amount of binders that are in scope
between the binding of the variable and the position it is used at. In Agda terms are
often indexed by the amount of bound variables. The variable constructor then only
accepts Debruijn indices, instead of variable names, that are smaller than the current
amount of bound variables. As a result, unbound variables cannot be referenced by
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de�nition. This technique is also referred to as intrinsically scoped. But indexing Term
with a number is not su�cient because System F has both expression variables and
type variables, that need to be distinguished. To solve this problem, we need to extend
the idea of Debruijn indices and store the corresponding sort for each variable. Thus,
we let S be a list of bindable sorts, instead of a number. The length of S represents
the amount of bound variables and the elements si of the list represent the sort of the
variable bound at Debruijn index i .
The index s represents the sort of the term itself.

data Term : Sorts Sort r Set where
`_ : s ∈ S Term S s
tt : Term S es
λ`x _ : Term (S ▷ es) es Term S es
Λ`α _ : Term (S ▷ τs) es Term S es
_·_ : Term S es Term S es Term S es
_•_ : Term S es Term S τs Term S es
let`x=_`in_ : Term S es Term (S ▷ es) es Term S es
`⊤ : Term S τs
_⇒_ : Term S τs Term S τs Term S τs
∀`α_ : Term (S ▷ τs) τs Term S τs
⋆ : Term S κs

Variables ` x are represented as membership proofs of type s ∈ S . Membership proofs
are inductively de�ned, similar to the de�nition of natural numbers. Membership proofs
can be constructed using the constructor here re�, where re� is proof that the last
element in a list S is the element we searched for. Alternatively, membership proofs
for a list S can be constructed via the constructor there x , where x is a membership
proof for the sublist S' of S that has one element less. As discussed, the Debruijn
representation of variables has the advantage that only already bound variables can be
referenced by the variable constructor by de�nition.
The unit element tt and type `⊤ represent base expressions and types respectively.
Lambda abstractions λ`x e result in function types τ1 ⇒ τ2 and type abstractions Λ`α
e result in forall types ∀`α τ. Both abstractions and forall types introduce an additional
sort es, or τs respectively, to the index S of their corresponding body to account for
the additional new binding.
The application constructor e1 · e2 applies the argument e2 to the function e1.
Similarly, type application e • τ eliminates type abstractions.
Let bindings let`x= e2 `in e1 combine abstraction and application.
The kind ⋆ is kind of all types.
We use abbreviations Var S s = s ∈ S , Expr S = Term S es, Type S = Term S τs and
variables x , e and τ respectively. Furthermore, we use the variable t for an arbitrary
Term S s.

Renaming

Renamings ρ of type Ren S1 S2 are de�ned as total functions that map variables Var
S1 s to variables Var S2 s. Renamings preserve the sort s of the variable.

Ren : Sorts Sorts Set
Ren S1 S2 = ∀ s Var S1 s Var S2 s
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Applying a renaming Ren S1 S2 to a term Term S1 s yields a new term Term S2 s, where
variables are represented as references to elements in S2 instead of S1. The function
ren applies a renaming to a term.

ren : Ren S1 S2 (Term S1 s Term S2 s)
ren ρ (` x ) = ` (ρ _ x )
ren ρ (λ`x e) = λ`x (ren (extr ρ _) e)
ren ρ (τ1 ⇒ τ2) = ren ρ τ1 ⇒ ren ρ τ2
� ...

In the �rst case, the renaming is applied to all variables x .
When we encounter a binder for a term of sort s, as seen in the second case, the
renaming is extended using function extr. If we want to use a renaming as a function
or use the function extr, the sort argument s can usually be inferred by Agda. Inferring
a function argument is denoted with _.

extr : Ren S1 S2 (s : Sort var) Ren (S1 ▷ s) (S2 ▷ s)
extr ρ _ _ (here re�) = here re�
extr ρ _ _ (there x ) = there (ρ _ x )

The extension of a renaming introduces an additional variable binding of sort s. Thus,
if we encounter the new binding here re� in the extended renaming, then we return the
variable for the new binding here re�. The variables x of the original renaming ρ are
weakened by wrapping them in an additional there constructor. The sort arguments
are ignored inside the function body of extr by using the wildcard pattern _.
Similar to variables, terms can be weakened using the function wk that shifts all vari-
ables present in the term by one recursively.

wk : Term S s Term (S ▷ s' ) s
wk = ren wkr

The function wkr generates a weakening by wrapping all variables in an additional
there constructor.

wkr : Ren S (S ▷ s)
wkr _ = there

Substitution

The de�nition of substitutions σ with type Sub S1 S2 is similar to the de�nition of
renamings. But rather than mapping variables to variables, substitutions map vari-
ables to terms.

Sub : Sorts Sorts Set
Sub S1 S2 = ∀ s Var S1 s Term S2 s

Applying a substitution using the sub function is analogous to applying a renaming
using ren. If we encounter a binder in sub, the substitution must be extended using
function exts.

exts : Sub S1 S2 (s : Sort var) Sub (S1 ▷ s) (S2 ▷ s)
exts σ s _ (here re�) = ` here re�
exts σ s _ (there x ) = wk (σ _ x )
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For the newly bound variable here re�, we return the variable term ` here re�. Further-
more, all terms σ _ x originally present in the substitution σ are weakened using the
function wk.
The substitution operator t [ t' ] substitutes the last bound variable in t with t' , given
that the sort of the last binder corresponds to the sort of t' .

_[_] : Term (S ▷ s' ) s Term S s' Term S s
t [ t' ] = sub (singles ids t' ) t

A single substitution singles takes an existing substitution σ' and term t' . The term t'
is then introduced for an additional new binding here re�.

singles : Sub S1 S2 Term S2 s Sub (S1 ▷ s) S2

singles σ t' _ (here re�) = t'
singles σ t' _ (there x ) = σ _ x

In the case of _[_], we let σ' be the identity substitution ids : Sub S S .

Context

Similar to terms, typing contexts Γ are indexed by a list of bound variables. In conse-
quence, only types and kinds for bound variables can be stored in Γ by de�nition.

data Ctx : Sorts Set where
∅ : Ctx []
_▶_ : Ctx S Term S (type-of s) Ctx (S ▷ s)

Contexts are inductively de�ned and can either be empty ∅ or extended with one
element T , using the constructor Γ ▶ T . The variable T represents terms of the sort
type-of s. The function type-of maps bindable sorts s to the sort of the term that is
stored in Γ for variables of the sort s. Thus, if we bind a new variable for a term of
the sort s, then Γ needs to be extended by a term of the sort type-of s.

type-of es = τs
type-of τs = κs

Expression variables require Γ to store the corresponding type. Similarly, we store the
corresponding kind for all types in Γ .
The lookup function resolves the type or kind T for a variable in the context Γ .

lookup : Ctx S Var S s Term S (type-of s)
lookup (Γ ▶ T ) (here re�) = wk T
lookup (Γ ▶ T ) (there x ) = wk (lookup Γ x )

Inside both cases of the case split on variables, we wrap the looked up T in a weakening.
As a result, T always has the index S that aligns with the current required amount of
bound variables. The lookup function cannot fail by de�nition because we only allow
to lookup bound variables that must have an entry in Γ by de�nition.

Typing

The typing relation Γ ⊢ t : T relates a term t to its typing result T in a context
Γ .
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data _⊢_:_ : Ctx S Term S s Term S (type-of s) Set where
⊢`x :
lookup Γ x ≡ τ
Γ ⊢ ` x : τ

⊢⊤ :
Γ ⊢ tt : `⊤

⊢λ :
Γ ▶ τ ⊢ e : wk τ'
Γ ⊢ λ`x e : τ ⇒ τ'

⊢Λ :
Γ ▶ ⋆ ⊢ e : τ
Γ ⊢ Λ`α e : ∀`α τ

⊢· :
Γ ⊢ e1 : τ1 ⇒ τ2
Γ ⊢ e2 : τ1
Γ ⊢ e1 · e2 : τ2

⊢• :
Γ ⊢ e : ∀`α τ
Γ ⊢ e • τ' : τ [ τ' ]

⊢let :
Γ ⊢ e2 : τ
Γ ▶ τ ⊢ e1 : wk τ'
Γ ⊢ let`x= e2 `in e1 : τ'

⊢τ :
Γ ⊢ τ : ⋆

The rule ⊢`x says that a variable ` x has type τ, if the type for x in Γ is τ.
All unit expressions tt have type `⊤. This is expressed by the rule ⊢⊤.
The rule for abstractions ⊢λ introduces an expression variable of type τ to the body
e. Because the resulting body type τ' cannot use the newly introduced expression
variable, we let τ' have one variable bound less and weaken it to align in the list of
bound variables with the context Γ ▶ τ. As a result, τ' aligns with τ in the list of
bound variables to form the resulting function type τ ⇒ τ' .
The type abstraction rule ⊢Λ introduces a type variable to the body e and results in
the forall type ∀`α τ, where τ is the type of e. The type variable in e is introduced by
extending Γ with the kind ⋆.
Application is handled by the rule ⊢·. The rule says that if e1 is a function from τ1 to
τ2 and e2 has type τ1, then e1 · e2 has type τ2.
Similarly, the type application rule ⊢• states that if e has type ∀`α τ, then α can be
substituted with another type τ' inside τ.
The rule ⊢let combines the abstraction and application rule.
Regarding the typing of types, the rule ⊢τ indicates that all types τ are well formed and
have kind ⋆. Type variables are correctly typed per de�nition and type constructors
∀`α and ⇒ accept arbitrary types as their arguments. Hence, all types are well typed.

Typing of Renaming & Substitution

Because of extrinsic typing, both renamings and substitutions need to have typed
counterparts.



12 Marius Weidner

We formalize typed renamings ⊢ρ inductively as order preserving embeddings. Thus,
if a variable x1 of type s1 ∈ S1 references an element with an index smaller than some
other variable x2 in S1, then renamed x1 must still reference an element with a smaller
index than renamed x2 in S2. Arbitrary renamings would allow swapping items and
potentially violate the telescoping. Telescoping allows types stored in the context to
depend on type variables bound inside the context before them.
Interestingly, because of the intrinsically scoped de�nition of terms, all renamings must
be order preserving embeddings by de�nition. Thus, it should be possible to prove order
preservation in the form of lemmas. Instead we choose to represent the rules for order
preserving embeddings as constructors of a data type, such that we can access the
property of order preservation by matching on the data type.

data _:_⇒r_ : Ren S1 S2 Ctx S1 Ctx S2 Set where
⊢idr : ∀ {Γ} _:_⇒r_ {S1 = S} {S2 = S} idr Γ Γ
⊢extr : ∀ {ρ : Ren S1 S2} {Γ1 : Ctx S1} {Γ2 : Ctx S2}

{T' : Term S1 (type-of s)}
ρ : Γ1 ⇒r Γ2

(extr ρ _) : (Γ1 ▶ T' ) ⇒r (Γ2 ▶ ren ρ T' )
⊢dropr : ∀ {ρ : Ren S1 S2} {Γ1 : Ctx S1} {Γ2 : Ctx S2}

{T' : Term S2 (type-of s)}
ρ : Γ1 ⇒r Γ2

(dropr ρ) : Γ1 ⇒r (Γ2 ▶ T' )

The identity renaming ⊢idr is typed by de�nition.
The typed extension of a renaming ⊢extr allows to extend both Γ1 and Γ2 by T' and
renamed T' respectively. The constructor ⊢extr corresponds to the typed version of
the function extr that is used when a binder is encountered.
The constructor ⊢dropr allows to introduce T' only in Γ2. Hence, ⊢dropr ⊢idr corre-
sponds to the typed weakening ⊢wkr of a term.
The absence of a constructor that allows to introduce some T only to Γ1 is exactly the
restriction needed for typed renamings to be order preserving embeddings.
Typed Substitutions are de�ned as total functions, similar to untyped substitutions.

_:_⇒s_ : Sub S1 S2 Ctx S1 Ctx S2 Set
_:_⇒s_ {S1 = S1} σ Γ1 Γ2 = ∀ {s} (x : Var S1 s)

Γ2 ⊢ σ _ x : (sub σ (lookup Γ1 x ))

Typed substitutions ⊢σ map variables x ∈ S1 to the corresponding typing of the term
σ _ x in Γ2. The type of the term σ _ x must be the original type of x in Γ1 applied
to the substitution σ.

Semantics

The semantics of System F are formalized as call-by-value, that is, there is no reduction
under binders.
Values are indexed by their corresponding irreducible expression.

data Val : Expr S Set where
v-λ : Val (λ`x e)
v-Λ : Val (Λ`α e)
v-tt : ∀ {S} Val (tt {S = S})
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System F has three values. The two closure values v-λ and v-Λ and the unit value v-tt.
We formalize small step semantics, where each constructor represents a single reduction
step e ↪→ e' . Small step semantics distinguish between β and ξ rules. Meaningful
computation in the form of substitution is done by β rules while ξ rules only reduce
subexpressions.

data _↪→_ : Expr S Expr S Set where
β-λ :
Val e2
(λ`x e1) · e2 ↪→ e1 [ e2 ]
β-Λ :
(Λ`α e) • τ ↪→ e [ τ ]
β-let :
Val e2
let`x= e2 `in e1 ↪→ (e1 [ e2 ])
ξ-·1 :
e1 ↪→ e
e1 · e2 ↪→ e · e2
ξ-·2 :
e2 ↪→ e
Val e1
e1 · e2 ↪→ e1 · e
ξ-• :
e ↪→ e'
e • τ ↪→ e' • τ
ξ-let :
e2 ↪→ e
let`x= e2 `in e1 ↪→ let`x= e `in e1

The rules β-λ and β-Λ give meaning to application and type application by substituting
the applied expression, or type respectively, into the abstraction body. In both cases,
we make sure that the abstraction and the applied argument are values.
The reduction rule β-let functions similar to the rule β-λ and substitutes the value e2
into e1.
The rules ξ-·i and ξ-• evaluate subexpressions of applications until e1 and e2, or e
respectively, are values.
The rule ξ-let reduces the bound expression e2 until e2 is a value and β-let can be
applied.

3.2 Soundness

Progress

We prove progress by showing that a typed expression e can either be further re-
duced to another expression e' or e is a value. The proof follows by induction over the
typing rules.
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progress :
∅ ⊢ e : τ
(∃[ e' ] (e ↪→ e' )) ⊎ Val e

progress ⊢⊤ = inj2 v-tt
progress (⊢λ _) = inj2 v-λ
progress (⊢Λ _) = inj2 v-Λ
progress (⊢· {e1 = e1} {e2 = e2} ⊢e1 ⊢e2) with progress ⊢e1 | progress ⊢e2
... | inj1 (e1' , e1↪→e1' ) | _ = inj1 (e1' · e2 , ξ-·1 e1↪→e1' )
... | inj2 v | inj1 (e2' , e2↪→e2' ) = inj1 (e1 · e2' , ξ-·2 e2↪→e2' v)
... | inj2 (v-λ {e = e1}) | inj2 v = inj1 (e1 [ e2 ] , β-λ v)
progress (⊢• {τ' = τ'} ⊢e) with progress ⊢e
... | inj1 (e' , e↪→e' ) = inj1 (e' • τ' , ξ-• e↪→e' )
... | inj2 (v-Λ {e = e}) = inj1 (e [ τ' ] , β-Λ)
progress (⊢let {e2 = e2} {e1 = e1} ⊢e2 ⊢e1) with progress ⊢e2
... | inj1 (e2' , e2↪→e2' ) = inj1 ((let`x= e2' `in e1) , ξ-let e2↪→e2' )
... | inj2 v = inj1 (e1 [ e2 ] , β-let v)

The cases ⊢⊤, ⊢λ and ⊢Λ result in values. The application cases ⊢·, ⊢• and ⊢let follow
directly from the induction hypothesis.

Subject Reduction

We prove subject-reduction, that is, reduction preserves typing. More speci�cally, an
expression e with type τ still has type τ after being reduced to e' . We prove subject
reduction by induction over the reduction rules.

subject-reduction : ∀ {Γ : Ctx S}
Γ ⊢ e : τ
e ↪→ e'
Γ ⊢ e' : τ

subject-reduction (⊢· (⊢λ ⊢e1) ⊢e2) (β-λ v2) = e[e]-preserves ⊢e1 ⊢e2
subject-reduction (⊢· ⊢e1 ⊢e2) (ξ-·1 e1↪→e) = ⊢· (subject-reduction ⊢e1 e1↪→e) ⊢e2
subject-reduction (⊢· ⊢e1 ⊢e2) (ξ-·2 e2↪→e x ) = ⊢· ⊢e1 (subject-reduction ⊢e2 e2↪→e)
subject-reduction (⊢• (⊢Λ ⊢e)) β-Λ = e[τ]-preserves ⊢e ⊢τ
subject-reduction (⊢• ⊢e) (ξ-• e↪→e' ) = ⊢• (subject-reduction ⊢e e↪→e' )
subject-reduction (⊢let ⊢e2 ⊢e1) (β-let v2) = e[e]-preserves ⊢e1 ⊢e2
subject-reduction (⊢let ⊢e2 ⊢e1) (ξ-let e2↪→e' ) = ⊢let
(subject-reduction ⊢e2 e2↪→e' ) ⊢e1

The ξ reduction cases ξ-·1, ξ-·2, ξ-• and ξ-let follow directly from the induction hypoth-
esis.
For the β reduction cases β-λ, β�Λ and β-let, we need to prove that substitutions
preserve the typing. We have two di�erent types of substitution present inside the
reduction rules: e [ e ] and e [ τ ]. Both e[e]-preserves and e[τ]-preserves follow from
a more general lemma ⊢σ-preserves. The lemma ⊢σ-preserves proves that applying a
typed substitution preserves the typing.
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⊢σ-preserves : ∀ {σ : Sub S1 S2} {Γ1 : Ctx S1} {Γ2 : Ctx S2}
{t : Term S1 s} {T : Term S1 (type-of s)}

σ : Γ1 ⇒s Γ2

Γ1 ⊢ t : T
Γ2 ⊢ (sub σ t) : (sub σ T )

The lemma ⊢σ-preserves follows by induction over the typing rules and lemmas about
the interaction of substitutions and renamings. More speci�cally, we also need to prove
that all operations on substitutions preserve the typing. For instance, we need to prove
the lemma ⊢σ^ that says that the typed extension of a substitution ⊢exts is type
preserving. Because exts uses renaming under the hood, we also need to prove the
lemma ⊢ρ-preserves that says that applying a typed renaming preserves the typing.
Furthermore, we need to prove the lemmas assoc-sub-ren, assoc-ren-ren, assoc-ren-sub
and assoc-sub-sub that prove the operations of applying a renaming and substitution
to be associative in all combinations. 1.
The soundness property of System F follows as a consequence of progress and subject-
reduction.

4 System FO

4.1 Speci�cation

Sorts

In addition to the sorts of System F, System FO introduces two new sorts: os for
overloaded variables and cs for constraints.

data Sort : Bindable Set where
os : Sort var
cs : Sort no-var
� ...

Terms of sort os can only be constructed using the variable constructor `_. Thus, terms
of sort os are called overloaded variables and sort os is indexed by var. Variables for
constraints do not exist in System FO and thus cs is indexed by no-var. We use the
variable symbol o for overloaded variables and the variable symbol c for constraints.

Syntax

We only discuss additions to the syntax of System F.

1 Considering the fact that the soundness proof for System F is not the main part of
this work and resources can be found online [5], the overview of the proof itself is
rather short. The full proof can be found as Agda code �le: https://github.com/
Mari-W/System-Fo/blob/main/proofs/SystemF.agda

https://github.com/Mari-W/System-Fo/blob/main/proofs/SystemF.agda
https://github.com/Mari-W/System-Fo/blob/main/proofs/SystemF.agda
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data Term : Sorts Sort r Set where
decl`o`in_ : Term (S ▷ os) es Term S es
inst`_`=_`in_ : Term S os Term S es Term S es Term S es
_:_ : Term S os Term S τs Term S cs
λ̄_⇒_ : Term S cs Term S es Term S es
[_]⇒_ : Term S cs Term S τs Term S τs
� ...

Declarations decl`o`in e introduce a new overloaded variable o. Hence, S is extended
by the sort os inside the body e.
The expression inst` o = e2 `in e1 introduces an additional instance for o. The actual
meaning for the instance is given by e2. Instance expressions do not introduce new
bindings and thus, the index S is never extended.
Constraints c can be constructed using constructor o : τ.
A constraint c can be part of a constraint abstraction λ̄ c ⇒ e. Constraint abstractions
assume the constraint c to be valid inside the body e and result in constraint types [
c ]⇒ τ. The constraint type lifts the constraint from the expression level to the type
level, where it will be implicitly eliminated by the typing rules.
Going forward, we will use the abbreviation Cstr S = Term S cs.

Renaming & Substitution

Renamings and substitutions in System FO are formalized identically to renamings
and substitutions in System F. The only di�erence is that we de�ne the substitution
operator only on types.

_[_] : Type (S ▷ τs) Type S Type S
τ [ τ' ] = sub (single-types ids τ' ) τ

The single-types function only introduces a new binding for types and not for arbitrary
terms. Because we do not formalize direct semantics for System FO, only substitutions
of types in types are necessary. Type in type substitution appears in the typing rule
for type application.

Context

In addition to types and kinds, the existence of overloaded variables is stored inside
the context. Overloaded variables act as normal context items. Because overloaded
variables themselves do not have a type, but rather multiple types that they can take
on, we only need to store their existence in Γ . Thus, similar to type variables, we store
kind ⋆ in Γ to denote the existence of an overloaded variable.
The types that an overloaded variable can take on are stored in the form of constraints.
Constraints can be introduced to the context by both constraint abstractions and
instance expressions.

data Ctx : Sorts Set where
_▶_ : Ctx S Cstr S Ctx S
� ...

We write Γ ▶ c to pick up a constraint c. Because constraints give an additional
meaning to an overloaded variable that is already bound, the index S is not modi�ed.
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The lookup function in System FO is de�ned analogous to the lookup function in System
F and simply ignores constraints stored in the context.

Constraint Solving

The search for constraints in a context is inductively formalized, similar to membership
proofs s ∈ S . The subtle di�erence is that we reference constraints in Γ and not in S .
The constraint solving type does need to search in Γ because S does not know about
the existence of constraints.

data [_]∈_ : Cstr S Ctx S Set where
here : [ (` o : τ) ]∈ (Γ ▶ (` o : τ))
under-bind : {I : Term S (item-of s' )}
[ (` o : τ) ]∈ Γ [ (` there o : wk τ) ]∈ (Γ ▶ I )

under-cstr : [ c ]∈ Γ [ c ]∈ (Γ ▶ c' )

The here constructor is analogous to the here constructor of memberships and can be
used when the last item in Γ is the desired constraint c.
If the last item in the context is not the desired constraint c, then c must be further
inside the context. The constraint can either be behind an item stored in Γ (under-bind)
or a constraint (under-cstr). In the case that c is under a binder, the constraint needs
to be weakened to align in S with the position that it is resolved for.
We use the constraint solving type inside the type system to resolve the instance for
usages of overloaded variables and to implicitly eliminate constraints.

Typing

We only discuss typing rules not already discussed in the System F speci�cation. The
typing for overloaded variables results in a type. As a result, the type-of function returns
the sort τs for the sort os in the case of typings.

data _⊢_:_ : Ctx S Term S s Term S (type-of s) Set where
⊢`o :
[ ` o : τ ]∈ Γ
Γ ⊢ ` o : τ

⊢λ̄ :
Γ ▶ c ⊢ e : τ
Γ ⊢ λ̄ c ⇒ e : [ c ]⇒ τ

⊢⊘ :
Γ ⊢ e : [ ` o : τ ]⇒ τ'
[ ` o : τ ]∈ Γ
Γ ⊢ e : τ'

⊢decl :
Γ ▶ ⋆ ⊢ e : wk τ
Γ ⊢ decl`o`in e : τ

⊢inst :
Γ ⊢ e2 : τ
Γ ▶ (` o : τ) ⊢ e1 : τ'
Γ ⊢ inst` ` o `= e2 `in e1 : τ'

� ...
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The rule for overloaded variables ⊢`o says that if we can resolve the constraint o : τ in
Γ , then o can take on type τ.
The rule for constraint abstractions ⊢λ̄ appends the constraint c to Γ and thus assumes
c to be valid inside the body e. Constraint abstractions result in expressions of the
corresponding constraint type [ c ]⇒ τ that lifts the constraint onto the type level.
Expressions e with constraint type [ c ]⇒ τ' have the constraint implicitly eliminated
using the rule ⊢⊘, given c can be resolved in Γ .
The rule ⊢decl introduces a new overloaded variable o to e. To introduce o in Γ , we only
need to store the information that o exists as overloaded variable. The existence of o
is denoted by extending Γ with kind ⋆. Analogous to the type τ' inside the abstraction
rule ⊢λ, the resulting type τ cannot use the introduced overloaded variable and thus is
weakened to align in S with Γ ▶ ⋆. In consequence, τ can act as the resulting type of
the typing.
An instance for an overloaded variable o is typed using the rule ⊢inst. We extend Γ
with constraint o : τ inside e1, where τ is the type of e2.

Typing Renaming & Substitution

Typed renamings are identical to typed renamings in System F, except there is an
additional case for the weakening by a constraint.

data _:_⇒r_ : Ren S1 S2 Ctx S1 Ctx S2 Set where
⊢drop-cstrr : ∀ {Γ1 : Ctx S1} {Γ2 : Ctx S2} {τ} {o}
ρ : Γ1 ⇒r Γ2

ρ : Γ1 ⇒r (Γ2 ▶ (o : τ))
� ...

A constraint o : τ can be introduced only to Γ2 using the ⊢drop-cstrr constructor.
Dropping a constraint corresponds to a typed weakening, similar to constructor ⊢dropr,
but instead of introducing an unused variable we introduce an unused constraint. In
consequence, the typed weakening by a constraint ⊢wk-cstrr is de�ned by ⊢drop-cstrr
⊢idr.
Other than in System F, arbitrary substitutions will not be allowed in System FO.
Similar to the substitution operator we restrict typed substitutions in System FO to
substitutions of types in types.

data _:_⇒s_ : Sub S1 S2 Ctx S1 Ctx S2 Set where
⊢single-types : ∀ {Γ1 : Ctx S1} {Γ2 : Ctx S2} {τ : Type S2}
σ : Γ1 ⇒s Γ2

single-types σ τ : Γ1 ▶ ⋆ ⇒s Γ2

� ...

The constructor ⊢single-types allows to introduce an additional new type variable binder
that is substituted with type τ in Γ1. Thus, the constructor ⊢single-types complements
the single-types function.
Constructors ⊢ids, ⊢exts, ⊢drops and ⊢drop-cstrs are not shown. All of them function
the same way as their counterparts in typed renamings.
The intuition here is that if we would allow all terms to be introduced using a ⊢terms

constructor, then typed substitutions in System FO would be arbitrary again. The
restriction to type in type substitutions simpli�es the type preservation proof for the
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Dictionary Passing Transform by eliminating cases for non-type terms that would oth-
erwise needed to be proven. In hindsight arbitrary substitutions would not have pro-
duced an unreasonable amount of additional work, but the restriction did not have any
negative e�ects, so it remained as is.

5 The Dictionary Passing Transform

5.1 Translation

Sorts

The translation of System FO sorts to System F sorts only considers sorts that are
bindable. The two missing non-bindable sorts cs and κs do not need to be translated.
Intuitively there does not even exist a sensible translation for cs.

s⇝s : FO.Sort var F.Sort var
s⇝s es = es
s⇝s os = es
s⇝s τs = τs

Sorts es and τs translate to their corresponding counterparts in System F.
The sort os translates to es. This is because, instead of removing decl expressions as
seen in the example at the beginning, we keep them as redundant let expressions that
bind a unit value tt. Because decl expressions bind a new overloaded variable in System
FO, removing them would result in a variable binding less in System F. To prevent more
complex proofs involving the index S of terms, we keep all decl expressions as redundant
let bindings. In consequence, all bindings for overloaded variables translate to normal
expression bindings in System F and thus, the sort os needs to translate to es.
Translating the index S directly is not possible because there might appear additional
sorts inside the list after the translation. New sorts must be added for variable bindings
introduced by the translation. For example, an inst` ` o = e2 `in e1 expression does
not bind a new variable in e1, but translates to a let`x= e2 `in e1 binding. Hence, S
must have an additional entry es at the corresponding position to further function as
valid index for the translated e1. Similarly, an additional sort es must be appended
to S inside the body of translated constraint abstractions. To solve this problem the
System FO context Γ is used to build the translated S . The context stores the relevant
information about introduced constraints and thus all positions of new bindings that
were not present in System FO.

Γ⇝S : FO.Ctx FO.S F.Sorts
Γ⇝S ∅ = []
Γ⇝S (Γ ▶ c) = Γ⇝S Γ ▷ F.es
Γ⇝S {S ▷ s} (Γ ▶ T ) = Γ⇝S Γ ▷ s⇝s s

The empty context ∅ corresponds to the empty list [].
For each constraint in Γ an additional sort es is appended to S .
If we �nd that a normal item is stored in the context, then the sort s is directly
translated using the function s⇝s.
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Variables

Similar to the translation of sort lists S , the translation for variables needs context
information.

x⇝x : ∀ {Γ : FO.Ctx FO.S}

FO.Var FO.S FO.s F.Var (Γ⇝S Γ) (s⇝s FO.s)
x⇝x {Γ = Γ ▶ τ} (here re�) = here re�
x⇝x {Γ = Γ ▶ τ} (there x ) = there (x⇝x x )
x⇝x {Γ = Γ ▶ c} x = there (x⇝x x )

If an item is stored in the context we can translate the variable directly.
Whenever a constraint is encountered, x is wrapped in an additional there. This is
because the expression that introduced the constraint will translate to an expression
with an additional new binding that needs to be respected in System F.
Resolved constraints translate to correct unique expression variables using function
o⇝x. We can apply a symmetric argumentation as seen in the translation for variables
because the type for resolved constraints [ c ]∈ Γ preserves the structure of the context
perfectly. The subtle di�erence to x⇝x is that we have the two cases here and under-cstr
for constraints, instead of the two cases here and there for normal variables. Futhermore,
we only have one case for bindings under-bind in o⇝x, instead of one case for constraints
in x⇝x.

o⇝x : ∀ {Γ : FO.Ctx FO.S}

[ ` FO.o : FO.τ ]∈ Γ F.Var (Γ⇝S Γ) F.es
o⇝x here = here re�
o⇝x (under-bind o:τ∈Γ) = there (o⇝x o:τ∈Γ)
o⇝x (under-cstr o:τ∈Γ) = there (o⇝x o:τ∈Γ)

Inside the case here we found the correct instance, now variable.
When we encounter a normal binding in the case under-bind, we wrap the variable in
a there constructor to respect the binding.
In the case under-cstr, we again wrap the variable in an additional there that was not
present before to respect the new binding introduced by the translation.

Context

The translation of contexts is mostly a direct translation. We only look at the transla-
tion of constraints stored in the context.

Γ⇝Γ : (Γ : FO.Ctx FO.S) F.Ctx (Γ⇝S Γ)
Γ⇝Γ (Γ ▶ (` o : τ)) = (Γ⇝Γ Γ) ▶ τ⇝τ τ
� ...

Following the idea from above, constraints o : τ stored inside Γ translate to normal
items in the translated Γ . The item introduced is the translated type τ⇝τ τ that was
originally required by the constraint. This is exactly what we want because for each
constraint in System FO there will either be an additional lambda binding in System
F that accepts the constraint as higher-order function or a let binding that binds a
variable with type τ⇝τ τ.
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Renaming & Substitution

Typed renamings in System FO translate to untyped renamings in System F.

⊢ρ⇝ρ : ∀ {ρ : FO.Ren FO.S1 FO.S2} {Γ1 : FO.Ctx FO.S1} {Γ2 : FO.Ctx FO.S2}

ρ FO.: Γ1 ⇒r Γ2

F.Ren (Γ⇝S Γ1) (Γ⇝S Γ2)
⊢ρ⇝ρ (⊢drop-cstrr ⊢ρ) = F.dropr (⊢ρ⇝ρ ⊢ρ)
� ...

Because constraints translate to actual bindings, the constructor ⊢drop-cstrr translates
to dropr in System F.
The typed renamings ⊢idr, ⊢extr and ⊢dropr translate to their untyped counterparts.
The translation of typed substitutions to untyped substitutions follows similarly.

⊢σ⇝σ : ∀ {σ : FO.Sub FO.S1 FO.S2} {Γ1 : FO.Ctx FO.S1} {Γ2 : FO.Ctx FO.S2}

σ FO.: Γ1 ⇒s Γ2

F.Sub (Γ⇝S Γ1) (Γ⇝S Γ2)
⊢σ⇝σ (⊢single-types {τ = τ} ⊢σ) = F.singles (⊢σ⇝σ ⊢σ) (τ⇝τ τ)
� ...

The typed renaming ⊢single-types translates to its untyped counterpart for arbitrary
terms singles.
The cases ⊢ids, ⊢exts, ⊢drops and ⊢drop-cstrs are analogous to the cases for renamings.

Terms

Types and kinds can be translated without typing information using the function T⇝T.
We only look at the untyped translation of types τ⇝τ that is used inside the function
T⇝T, because the kind ⋆ translates to its direct counterpart in System F.

τ⇝τ : ∀ {Γ : FO.Ctx FO.S}

FO.Type FO.S
F.Type (Γ⇝S Γ)
τ⇝τ ([ o : τ ]⇒ τ' ) = τ⇝τ τ ⇒ τ⇝τ τ'
� ...

Constraint types [ o : τ ]⇒ τ' translate to function types τ⇒ τ' . The translation from
constraint types to function types directly corresponds to the translation of constraint
abstractions to normal abstractions. The implicitly resolved constraint will be taken
as higher-order function argument of type τ⇝τ τ.
All other System FO types translate to their direct counterparts in System F.
Arbitrary terms can only be translated using typing information. The typing carries
information about the instances that were resolved for usages of overloaded variables
and the instances that were implicitly resolved for constraints. We only look at the
translation of System FO expressions that do not have a direct counterpart in System
F.
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⊢t⇝t : ∀ {Γ : FO.Ctx FO.S} {t : FO.Term FO.S FO.s}

{T : FO.Term FO.S (FO.type-of FO.s)}

Γ FO.⊢ t : T

F.Term (Γ⇝S Γ) (s⇝s FO.s)
⊢t⇝t (⊢`o o:τ∈Γ) = ` o⇝x o:τ∈Γ
⊢t⇝t (⊢λ̄ ⊢e) = λ`x (⊢t⇝t ⊢e)
⊢t⇝t (⊢⊘ ⊢e o:τ∈Γ) = ⊢t⇝t ⊢e · ` o⇝x o:τ∈Γ
⊢t⇝t (⊢decl ⊢e) = let`x= tt `in ⊢t⇝t ⊢e
⊢t⇝t (⊢inst ⊢e2 ⊢e1) = let`x= ⊢t⇝t ⊢e2 `in ⊢t⇝t ⊢e1
� ...

Typed overloaded variables ⊢`o carry the information o:τ∈Γ about the instance that
was resolved for o. We translate the resolved instance to the corresponding unique
variable in System F using the o⇝x function from above.
Typed constraint abstractions ⊢λ̄ translate to normal abstractions with an additional
new binding.
An implicitly resolved constraint ⊢⊘ translates to an explicit application that passes
the resolved instance o:τ∈Γ as argument. We again use function o⇝x to translate the
resolved instance to the corresponding unique variable.
As discussed, we translate typed declaration expressions ⊢decl to redundant let bindings
that bind a unit value.
We translate typed instance expressions ⊢inst to let expressions that introduce an
additional binding not present in System FO.

5.2 Type Preservation

Terms

We �rst look at the �nal proof of type preservation for the Dictionary Passing Trans-
form to motivate all necessary lemmas. Type preservation is proven by induction over
the typing rules of System FO. The function⇝-pres-⊢ produces a typed System F term
for an arbitrary typed System FO term ⊢t . The translated System FO term ⊢t⇝t t is
typed in the translated context Γ⇝Γ Γ and has the typing result T⇝T T .

⇝-pres-⊢ : {Γ : FO.Ctx FO.S} {t : FO.Term FO.S FO.s}

{T : FO.Term FO.S (FO.type-of FO.s)}

(⊢t : Γ FO.⊢ t : T )
(Γ⇝Γ Γ) F.⊢ (⊢t⇝t ⊢t) : (T⇝T T )
⇝-pres-⊢ (⊢`x Γx≡τ) = ⊢`x (⇝-pres-lookup Γx≡τ)
⇝-pres-⊢ (⊢`o o:τ∈Γ) = ⊢`x (⇝-pres-cstr-solve o:τ∈Γ)
⇝-pres-⊢ (⊢let ⊢e2 ⊢e1) = ⊢let (⇝-pres-⊢ ⊢e2)
(subst (_ F.⊢ ⊢t⇝t ⊢e1 :_) ⇝-dist-wk-type(⇝-pres-⊢ ⊢e1))
⇝-pres-⊢ (⊢λ̄ {c = (` o : τ)} ⊢e) = ⊢λ
(subst (_ F.⊢ ⊢t⇝t ⊢e :_) ⇝-dist-wk-inst-type (⇝-pres-⊢ ⊢e))
⇝-pres-⊢ (⊢⊘ ⊢e o:τ∈Γ) = ⊢· (⇝-pres-⊢ ⊢e) (⊢`x (⇝-pres-cstr-solve o:τ∈Γ))
⇝-pres-⊢ (⊢• {τ = τ} {τ' = τ'} ⊢e) = subst (_ F.⊢ ⊢t⇝t ⊢e • τ⇝τ τ' :_)
(⇝-dist-τ[τ'] τ' τ) (⊢• (⇝-pres-⊢ ⊢e))

� ...

Proof Γx≡τ that a variable x has type τ in Γ translates to proof that x⇝x x has type
τ⇝τ τ in Γ⇝Γ Γ using lemma ⇝-pres-lookup. The lemma produces an equality proof
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of type F.lookup (Γ⇝Γ Γ) (x⇝x x ) ≡ (τ⇝τ τ) when given an equality proof FO.lookup
Γ x ≡ τ . With the lemma ⇝-pres-lookup the typing rule ⊢`x can be translated to the
typing rule for variables in System F.
Similarly, the lemma⇝-pres-cstr-solve translates the proof o:τ∈Γ that an instance o : τ
was resolved for an overloaded variable o to proof that the unique variable o⇝x o:τ∈Γ
has type τ⇝τ τ in Γ⇝Γ Γ : F.lookup (Γ⇝Γ Γ) (o⇝x o:τ∈Γ) ≡ (τ⇝τ τ). Using lemma
⇝-pres-cstr-solve the typing rule for overloaded variables ⊢`o can be translated to the
typing rule for normal variables ⊢`x.
Typed let bindings ⊢let ⊢e2 ⊢e1 translate to typed let bindings in System F. The typing
rule ⊢e2 is translated directly using the induction hypothesis. Because the expression
e1 results in type wk τ' inside typing rule ⊢e1, proof is needed that τ' weakened in
System FO and translated to System F is equivalent to the weakening of the translated
τ' in System F. Lemma ⇝-dist-wk-type produces the required equality proof of type
τ⇝τ {Γ = Γ ▶ T} (FO.wk τ' ) ≡ F.wk (τ⇝τ τ' ). On the left hand side of the equality
we need to specify that the otherwise implicit argument Γ = Γ needs to be an extended
Γ in that case. We then substitute the equivalence into the translation of the typing
rule ⊢e1.
Typed constraint abstractions ⊢λ̄ translate to normal abstractions in System F. Inside
the typing ⊢e, the result type τ of the body e does not need to be weakened because the
constraint abstraction only introduced a constraint and no actual binding to context Γ .
After the translation the former constraint will be bound by a binding and thus a new
item in Γ⇝Γ Γ will exist. To ignore the binding, τ is weakened in the abstraction rule
⊢λ. Lemma⇝-dist-wk-inst-type proves that translating τ in Γ extended by a constraint
is equivalent to weakening τ after the translation: τ⇝τ {Γ = Γ ▶ (` o : τ' )} τ ≡ F.wk
(τ⇝τ τ). The lemma follows because the constraint translates to an actual binding and
consequently, both sides of the equivalence have an additional expression binding that
τ does not care about.
Implicitly resolved constraints ⊢⊘ carry the information o:τ∈Γ about the instance that
was resolved. In System F the former constraint is explicitly passed as variable pointing
to the correct translated instance. Thus, the typing ⊢⊘ results in typed application ⊢·.
We apply the correct equality proof to the typing rule ⊢`x using lemma ⇝-pres-cstr-
solve.
The type application rule ⊢• contains type in type substitution. Hence, we need proof
that it is irrelevant, if τ' is substituted into τ and then translated or both τ and τ'
are translated and substitution is applied in System F. Using lemma ⇝-dist-τ[τ'] of
type (τ⇝τ {Γ = Γ ▶ ⋆} τ' F.[ τ⇝τ τ ]) ≡ τ⇝τ (τ' FO.[ τ ]) we can substitute the
equivalence into the System F typing rule ⊢• (⇝-pres-⊢ ⊢e).
The translation of ⊢⊤, ⊢λ, ⊢·, ⊢decl and ⊢inst is either a direct translation or uses
similar ideas and no other lemmas than the ones discussed.

Renaming

Both⇝-dist-wk-type and⇝-dist-wk-inst-type directly follow from a more general lemma
⇝-dist-ren-type for arbitrary renamings. The lemma ⇝-dist-ren-type proves that trans-
lating both the typed renaming ⊢ρ and type τ and then applying the renaming in
System F is equivalent to applying the renaming ρ in System FO and then translating
the renamed type τ. The lemma can be proven by induction over System FO types τ.
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⇝-dist-ren-type : {ρ : FO.Ren FO.S1 FO.S2}

{Γ1 : FO.Ctx FO.S1} {Γ2 : FO.Ctx FO.S2}

(⊢ρ : ρ FO.: Γ1 ⇒r Γ2)

(τ : FO.Type FO.S1)

F.ren (⊢ρ⇝ρ ⊢ρ) (τ⇝τ τ) ≡ τ⇝τ (FO.ren ρ τ)
⇝-dist-ren-type ⊢ρ (` x ) = cong `_ (⇝-dist-ren-var-type ⊢ρ x )
⇝-dist-ren-type ⊢ρ ([ ` o : τ ]⇒ τ' ) = cong2 _⇒_
(⇝-dist-ren-type ⊢ρ τ) (⇝-dist-ren-type ⊢ρ τ' )

� ...

The case for type variables needs an additional lemma ⇝-dist-ren-var-type speci�cally
for type variables. Lemma ⇝-dist-ren-var-type proves an analogous statement, but for
type variables applied to a renaming: (⊢ρ⇝ρ ⊢ρ) _ (x⇝x x ) ≡ x⇝x (ρ x ). This state-
ment can be proven via straight forward induction over typed System FO renamings
⊢ρ.
All other cases follow directly from the induction hypothesis. The only small exception
is the constraint type, where we need to respect that it translates to a function type.

Substitution

Similar to renamings, the lemma for single substitution on types ⇝-dist-τ[τ'] follows
from a more general lemma about type in type substitutions ⇝-dist-sub-type. The
lemma⇝-dist-sub-type also follows by straight forward induction over System FO types,
except the case for type variables. Other than with renamings, the cases for lemma ⇝-
dist-sub-var-type do not follow directly from the induction hypothesis. To understand
why, we at look at the case ⊢exts.

⇝-dist-sub-var-type : {σ : FO.Sub FO.S1 FO.S2}

{Γ1 : FO.Ctx FO.S1} {Γ2 : FO.Ctx FO.S2}

(⊢σ : σ FO.: Γ1 ⇒s Γ2)

(x : FO.Var FO.S1 τs)

F.sub (⊢σ⇝σ ⊢σ) (` x⇝x x ) ≡ τ⇝τ (FO.sub σ (` x ))
⇝-dist-sub-var-type (⊢exts ⊢σ) (here re�) = re�
⇝-dist-sub-var-type (⊢exts {σ = σ} ⊢σ) (there x ) = trans

(cong F.wk (⇝-dist-sub-var-type ⊢σ x )) (⇝-dist-ren-type FO.⊢wkr (σ x ))

The case ⊢exts is proven via a case split on variables, similar to how exts is de�ned.
The base case holds by de�nition. In the induction case we weaken both sides of the
equality that results from the outer induction hypothesis. We then combine the weak-
ened induction hypothesis with proof that weakenings preserve the translation using
transitivity. The intuition here is that we need the renaming lemma ⇝-dist-ren-type
applied to the typed weakening ⊢wkr because exts is de�ned by weakening the terms
that result of the substitution σ being applied to variables x .
Both ⊢ids and ⊢single-types follow directly from the induction hypothesis. The cases
for ⊢drops and ⊢drop-cstrs are similar to the case ⊢exts and also align with their
corresponding de�nition.
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Variables

We �rst look at the proof for lemma⇝-pres-lookup. The lemma is proven via induction
over the System FO context Γ .

⇝-pres-lookup : ∀ {Γ : FO.Ctx FO.S} {τ : FO.Type FO.S} {x : FO.Var FO.S es}

FO.lookup Γ x ≡ τ
F.lookup (Γ⇝Γ Γ) (x⇝x x ) ≡ (τ⇝τ τ)
⇝-pres-lookup {Γ = Γ ▶ τ} {x = here re�} re� = ⇝-dist-ren-type FO.⊢wkr τ
⇝-pres-lookup {Γ = Γ ▶ _} {τ'} {x = there x'} re� = trans
(cong F.wk (⇝-pres-lookup {x = x'} re�))

(⇝-dist-ren-type FO.⊢wkr (FO.lookup Γ x' ))
� ...

As an example we will look at the case Γ ▶ τ. The case is proven via a case split
on variables. The prove follows the same reasoning as the ⊢exts case for substitutions
above. Because the function lookup weakens the type τ that is looked up in Γ in both
cases here and there, both use lemma ⇝-dist-ren-type applied to the typed weakening
⊢wkr to account for the weakening.
The case Γ ▶ c follows analogously, but uses ⊢wk-cstrr applied to the induction hy-
pothesis instead of ⊢wkr. Furthermore, the case ∅ is impossible because there must be
a context item if a variable exists.
The lemma ⇝-pres-cstr-solve can be proven via induction over the type for resolved
constraints [ c ]∈ Γ . The lemma follows symmetrically to the lemma ⇝-pres-lookup
because the type for resolved constraints preserves the structure of Γ perfectly.

⇝-pres-cstr-solve : ∀ {Γ : FO.Ctx FO.S}

(o:τ∈Γ : [ ` FO.o : FO.τ ]∈ Γ)
F.lookup (Γ⇝Γ Γ) (o⇝x o:τ∈Γ) ≡ (τ⇝τ FO.τ)

Similar to the case split on variables with constructors here and there inside the case
Γ ▶ τ of lemma ⇝-pres-lookup, we have the two cases here and under-cstr in lemma
⇝-pres-cstr-solve. Both cases work similarly to cases in lemma ⇝-pres-lookup, except
that they use ⊢wk-cstrr instead of ⊢wkr.
Furthermore, we have the case under-bind that works similar to the case Γ ▶ c and
always uses the induction hypothesis applied to ⊢wkr because we search for a former
constraint and not a variable.

6 Discussion and Conclusion

6.1 Hindley Milner with Overloading

In this scenario the source language for the Dictionary Passing Transform would be
an extended Hindley-Milner [8] based system HMO and the target language would be
Hindley-Milner. The Hindley-Milner system is a restricted form of System F that allows
for full type inference. Similarly, HMO would be a restricted form of System FO with
support for full type inference.
Formalizing Hindley-Milner would require two new sorts, ms and ps for mono and poly
types, in favour of the sort for arbitrary types τs. Poly types can include quanti�cation
over type variables while mono types consist only of primitive types and type variables.
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Usually all language constructs are restricted to mono types, except let bound variables.
Hence, polymorphism in Hindley-Milner is also called let polymorphism. As a result,
constraints must have the form o : m, where m is a mono type. To separate the type
logic from the expression logic in Hindley-Milner fashion, we would need to embed
constraints into explicit type annotations of instances, instead of introducing them on
the expression level. The explicit type annotation for instances would allow poly types
because instance expressions translate to let bindings after all. But instances would
need to be restricted as well. For each overloaded variable o, all instances would need
to di�er in the type of their �rst argument.
With these two restrictions full type inference for instances and overloaded variables
should be preserved. The inference algorithm would treat instance expressions similar
to let bindings and could infer the type of an overloaded identi�er via the type of the
�rst argument applied. For now it remains unclear, if the inference algorithm can be
extended to work for arbitrary mono type constraints and how constraints should be
handled by the inference algorithm in general.

6.2 Proving Semantic Preservation

For now System FO does not have direct semantics formalized. In section 2.3 we already
discussed that correct semantics are already implicitly given by the translation, but it
could also be interesting to investigate direct semantics on the System FO syntax.
Semantics for System FO would need to be typed semantics because applications ` o ·
e1 · .. · en need type information to reduce properly. The correct instance for o needs to
be substituted based on the types of the arguments e1 .. en. More speci�cally, we could
introduce a reduction rule β-o-* that reduces ` o · e1 · .. · en to e · e1 · .. · en, where e is
the resolved instance based on the types of e1 .. en. The drawback would be that partial
application to overloaded variables would not be possible. Alternately, we could apply
the restriction mentioned above that restricts all instances for an overloaded variable
o to di�er in the type of their �rst argument. In consequence, the resolved instance for
o in a single application step ` o · e would be decidable.
Let ⊢e ↪→ ⊢e' be a typed small step semantic for System FO. We would need to
prove something similar to: If ⊢e ↪→ ⊢e' then ∃ [ e� ] (⊢e↪→e'⇝e↪→e' ⊢e ↪→* e�) ×
(⊢e↪→e'⇝e↪→e' ⊢e' ↪→* e�), where ⊢e↪→e'⇝e↪→e' translates typed System FO reduc-
tions to a untyped System F reductions. Instead of translating reduction steps directly,
we prove that both translated ⊢e and translated ⊢e' reduce to a System F expression
e� using �nite many reduction steps. This more general formulation is needed because
there might be more reduction steps in the translated System F expression than in the
System FO expression. For example, an implicitly resolved constraint in System FO
needs to be explicitly passed as argument using an additional application step in Sys-
tem F. For now it remains unclear if semantic preservation can be proven by induction
over typed semantic rules or if logical relations are needed [1].

6.3 Related Work

The ideas for the required restrictions to preserve the inference algorithm in section 6.1
originate from System O [9]. System O is a language extension to the Hindley-Milner
system. In contrast to System FO constraints are not introduced on the expression
level and instead are introduced via explicit type annotations of instances as part of
forall types.
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For instance, the valid System FO and HMO type ∀α. ∀β. [a : α α α] => [b :

β β β] => .. would be expressed as ∀α. (a : α α α) => ∀β. (b : β β

β) => .. in System O. Inside the System O type, we only introduce one constraint
per type variable, but a list of constraints would be allowed. The part about the
inference algorithm that remained unclear in section 6.1 is solved in System O by
restricting constraints to begin their type with the type variable that is bound by the
quanti�er that they are part of. In HMO such a connection would not exist.
Originally the plan was to formalize System O in Agda, but multiple issues arose in
the type preservation proof. First, because we have a list of n constraints in each forall
type, translating them results in n new lambda bindings in one induction step. While
the problem above can be handled, another problem complicated the proof of type
preservation via induction immensely. The translation of System O types must pull
out forall quanti�ers, because translating constraints directly to higher-order functions
would break the rule that function types are only allowed to be built from mono types.
For instance, the translated System O type from above should not be ∀α. (α α

α) ∀β. (β β β) .., but rather ∀α. ∀β. (α α α) (β β β) ⌋
.. to be a valid Hindley-Milner type. Including the additional transform on types
complicates the type preservation proof immensely, because the transform a�ects the
type of the next n expressions and thus straight forward induction did not work out.
Besides System O, there exist other formalizations that are closer related to typeclasses
in Haskell [10] [4]. A more general approach to constraint types is presented by the
theory of quali�ed types [6].

6.4 Conclusion

We have formalized both System F and System FO in Agda. In the process, we ex-
plored the technique of using an intrinsically scoped and sorted data type to represent
syntaxes. The essence of System FO was to act as a core calculus that captures the idea
of overloading and type constraints. We formalized the Dictionary Passing Transform
between System F and System FO. Furthermore, we proved the System F formalization
to be sound and the Dictionary Passing Transform from System FO to System F to be
type preserving. The full formalization of the Dictionary Passing Transform, System
FO and System F can be found as Agda code �les 2.
One trick used in the formalization was to introduce constraints individually using
constraint abstractions. As a result, we were able to translate constraint abstractions
directly to lambda abstractions in System F. Another trick that we used was to preserve
the structure of the context inside the type for resolved constraints. In consequence, the
translation of resolved constraints to Debruijn variables was straight forward because
the position of new bindings introduced by the translation was perfectly known.
A reasonable next step would be to de�ne direct semantics for System FO and prove
semantic preservation for the Dictionary Passing Transform.

2 Formalizations and proofs as Agda code �les: https://github.com/Mari-W/

System-Fo/tree/main/proofs

https://github.com/Mari-W/System-Fo/tree/main/proofs
https://github.com/Mari-W/System-Fo/tree/main/proofs
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